
10 Years of The Java Specialists' Newsletter 1

10 Years of The Java
Specialists' Newsletter

Dr Heinz M. Kabutz
heinz@javaspecialists.eu

http://www.javaspecialists.eu

© 2010 Heinz Kabutz – All Rights Reserved

10 Years of The Java Specialists' Newsletter

Brief Biography

 Dr Heinz Kabutz
– Live on Island of Crete in Mediterranean Sea (Europe)
– PhD Computer Science from University of Cape Town
– The Java Specialists' Newsletter

– Java programmer

– Java Champion since 2005
– Java instructor to corporates

• Java Specialist Master Course

– Threads, Java NIO, Memory, Optimizations, etc.
– Requires 2 years solid Java experience to participate

– Düsseldorf March 2011 & August 2011
– Chania (Crete) May 2011 & September 2011

2

10 Years of The Java Specialists' Newsletter

Why Crete?

 Airport 10 minutes from my house

 E1 connection to my house

 Closer to customers than Cape Town

 Great lifestyle, good food, clean air

 Super friendly citizens

 Wife and children are Greek citizens

 And now for the real reason ...

3

10 Years of The Java Specialists' Newsletter 4

10 Years of The Java Specialists' Newsletter

The Java Specialists’ Newsletter

 Some Statistics
– Served more than 1 million newsletters in past 12 months

– 50 000 readers in 121 countries

 But let us go back 10 years ...

5

10 Years of The Java Specialists' Newsletter 6

History - The Java Specialists' Newsletter

 "Java Argot, Things your Dad never told you"
– James Pereira suggested title for my book in April 2000

– Argot - slang or jargon peculiar to a particular group, esp.
(formerly) a group of thieves (Collins English Dictionary)

 Philip Greenspun
– Explained the pain of writing a computer book
– http://philip.greenspun.com/wtr/dead-trees/story.html

 Peter Carruthers "Pete's Weekly" Style
– Newsletter for small business owners, started in 1999

• www.petercarruthers.com
– Short ideas with a personal anecdote

10 Years of The Java Specialists' Newsletter 7

Dot-Com Crash

 Short 3 month visit to Germany in 2000
– Customers bankrupt or cancelled projects

 "When fate hands us a lemon, let's try to make
lemonade." - Dale Carnegie
– Lemon: No work, but lots of time
– Lemonade: The Java Specialists' Newsletter

 Wrote first Java article on Deadlocks
– November 2000
– Sent to 75 friends, colleagues and customers
– http://www.javaspecialists.eu/archive/Issue001.html

10 Years of The Java Specialists' Newsletter 8

Not Everyone Loves You

 First newsletter got a lot of positive feedback
– Thank you for your newsletter - it is definitely very welcome!

– always interested in the tricks of the trade. keep 'em coming
heinz.

– Thanks for the newsletter. Great, keep it up.

 But one "neutral" comment almost made me give up
– Unfortunately, I'm not interested in your newsletter, because

Java is not the world I live in - Lizette G.

 In 10 years, I received some unprintable emails
– Remember - they are having a bad day!

• Maybe mother-in-law announced she is visiting?

10 Years of The Java Specialists' Newsletter

#002 Anonymous Inner Classes (2000-12-07)

 In Java 1.0, we could initialize arrays like this:

 Or

 In Java 1.1, we had a new way of creating arrays

9

String[] temp_names = new String[3];
temp_names[0] = "Heinz";
temp_names[1] = "John";
temp_names[2] = "Anton";
universityRegistration.addNames(temp_names);

String[] temp_names = { "Heinz", "John", "Anton" };
universityRegistration.addNames(temp_names);

universityRegistration.addNames(
 new String[] { "Heinz", "John", "Anton" });

10 Years of The Java Specialists' Newsletter

Constructing Collections using Anon Classes

 Instead of doing it in several steps

 Java 1.1 introduced anonymous inner classes

 How does this work?

10

Collection temp_names = new Vector(3);
temp_names.add("Heinz");
temp_names.add("John");
temp_names.add("Anton");
universityRegistration.addNames(temp_names);

universityRegistration.addNames(new Vector(3)
 {{ add("Heinz"); add("John"); add("Anton"); }});

10 Years of The Java Specialists' Newsletter

 Imagine we had just a simple class named MyVector

 Move "add()" method calls to initializer block

 Make the class anonymous, but keep initializer block

11

public class MyVector extends Vector {
 public MyVector() {
 super(3);
 add("Heinz"); add("John"); add("Anton");
 }
}

public class MyVector extends Vector {
 { // initializer block
 add("Heinz"); add("John"); add("Anton");
 }
 public MyVector() {
 super(3); // to initialise it with a size of 3
 }
}

Vector myVector =
 new Vector(3) { // defining anonymous inner class
 {
 add("Heinz"); add("John"); add("Anton");
 }
};

10 Years of The Java Specialists' Newsletter

 In Java 5 you probably want to do

12

Java 5 Varargs

universityRegistration.addNames(
 Arrays.asList("Heinz","John","Anton")
);

10 Years of The Java Specialists' Newsletter

Soft Reference Based Map (#015 and #098)

 SoftReferences are not a reliable caching mechanism
– "Poor man's cache"

– Rather do not use

 WeakHashMap uses weak references for the keys
– Not useful as a cache

13

10 Years of The Java Specialists' Newsletter

Measuring Object Memory Usage

 Various approaches for measuring memory usage:
– Experimental (from Runtime memory functions)

• http://www.javaspecialists.eu/archive/Issue029.html
• http://www.javaspecialists.eu/archive/Issue078.html

– Agents
• http://www.javaspecialists.eu/archive/Issue142.html

– Neither is necessarily 100% accurate
– Both approaches use reflection to resolve object graphs

 You can then determine what uses more memory:
– ArrayList, HashSet, LinkedList or TreeSet

– String or byte[]

14

http://www.javaspecialists.eu/archive/Issue078.html
http://www.javaspecialists.eu/archive/Issue078.html

10 Years of The Java Specialists' Newsletter

How Much Memory Does "Joe" Use in Java?

 In C, "Joe" is a char[], zero terminated

 Each char in C takes one byte

 Thus, "Joe" takes 4 bytes

 In Java, each char uses two bytes

 How much memory do you think that "Joe" uses in
Java?

15

10 Years of The Java Specialists' Newsletter

32-bit "Joe" uses 48 bytes

 In Java, "Joe" is a String object:
– 8 byte object descriptor

– int length (4 bytes)
– int offset (4 bytes)
– int cachedHashCode (4 bytes)
– Pointer to char[] (4 bytes)

– For String object (excluding char[]) we use 24 bytes
– char[3] uses 8 + 4 + 3*2 ≈ 24 bytes

16

10 Years of The Java Specialists' Newsletter

64-bit "Joe" uses 72 bytes!

 Larger pointers
– 16 byte object descriptor

– int length (4 bytes)
– int offset (4 bytes)
– int cachedHashCode (4 bytes)
– Pointer to char[] (8 bytes)

– For String object (excluding char[]) we use 40 bytes
• Rounded up to nearest 8 bytes

– char[3] uses 16 + 4 + 3*2 ≈ 32 bytes

 Some special XX flags can reduce pointer size

17

10 Years of The Java Specialists' Newsletter

Memory Usage of Fields in Java

 Primitive fields
– Java 1.0 to 1.3, each field used 4 bytes minimum

– Java 1.4 onwards, each field uses a minimum of 1 byte
• boolean, byte: 1 byte
• char, short: 2 bytes
• int, float: 4 bytes
• double, long: 8 bytes

 Pointers to objects
– 32-bit use 4 bytes
– 64-bit use 8 bytes

18

10 Years of The Java Specialists' Newsletter

GUI Newsletters

 Global Hot Key Manager (#007)

19

public class GlobalHotkeyManager extends EventQueue {
 static {
 Toolkit.getDefaultToolkit().
 getSystemEventQueue().push(instance);
 }
 protected void dispatchEvent(AWTEvent event) {...}
}

10 Years of The Java Specialists' Newsletter

GUI Newsletters

 Placing components on each other
– Newsletter #041

– (Real-life use case was multi-line button in JDK 1.2)

20

10 Years of The Java Specialists' Newsletter

GUI Newsletters

 Tristate Checkbox
– Newsletters #082 and #145

– Used by several commercial systems

21

10 Years of The Java Specialists' Newsletter

Generating Classes in Java 6 (#180 & #181)

 Instead of using dynamic proxies, we can also
generate code
– In our approach, we use Java 6 javax.tools.JavaCompiler
– We compile the Java String in-memory to a byte[]

– We inject the class into any class loader
• With dynamic proxy class hack

22

10 Years of The Java Specialists' Newsletter

Enum Inversion Problem (#113)

 Answers the question: How can we persist enums?
– Using the ordinal is brittle

• Modifying the order of enums changes ordinal value
– Using the String representation is also risky

• Change in case would break backwards compatibility

 We introduce an interface EnumConverter and
– ReverseEnumMap<V extends Enum<V> & EnumConverter>

23

10 Years of The Java Specialists' Newsletter

Creating Objects Without Calling
Constructors (#175)

 Using the deserialization mechanism to make objects

24

public class SilentObjectCreator {
 public static <T> T create(Class<T> clazz) {
 return create(clazz, Object.class);
 }
 public static <T> T create(Class<T> clazz,
 Class<? super T> parent) {
 try {
 ReflectionFactory rf =
 ReflectionFactory.getReflectionFactory();
 Constructor objDef = parent.getDeclaredConstructor();
 Constructor intConstr =
 rf.newConstructorForSerialization(clazz, objDef);
 return clazz.cast(intConstr.newInstance());
 } catch (Exception e) {
 throw new IllegalStateException(e);
 }
 }
}

10 Years of The Java Specialists' Newsletter

The Laws of Concurrency

 With colourful names to help us remember
– The Law of the Sabotaged Doorbell (#146)

– The Law of the Distracted Spearfisherman (#147)
– The Law of the Overstocked Haberdashery (#149)
– The Law of the Blind Spot (#150)
– The Law of the Leaked Memo (#151)

– The Law of the Corrupt Politician (#152)
– The Law of the Micromanager (#155)
– The Law of Cretan Driving (#156)
– The Law of Sudden Riches (#159)

– The Law of the Uneaten Lutefisk (#160)
– The Law of the Xerox Copier (#176)

25

http://www.javaspecialists.eu/archive/Issue146.html
http://www.javaspecialists.eu/archive/Issue146.html
http://www.javaspecialists.eu/archive/Issue147.html
http://www.javaspecialists.eu/archive/Issue147.html
http://www.javaspecialists.eu/archive/Issue149.html
http://www.javaspecialists.eu/archive/Issue149.html
http://www.javaspecialists.eu/archive/Issue150.html
http://www.javaspecialists.eu/archive/Issue150.html
http://www.javaspecialists.eu/archive/Issue151.html
http://www.javaspecialists.eu/archive/Issue151.html
http://www.javaspecialists.eu/archive/Issue152.html
http://www.javaspecialists.eu/archive/Issue152.html
http://www.javaspecialists.eu/archive/Issue155.html
http://www.javaspecialists.eu/archive/Issue155.html
http://www.javaspecialists.eu/archive/Issue156.html
http://www.javaspecialists.eu/archive/Issue156.html
http://www.javaspecialists.eu/archive/Issue159.html
http://www.javaspecialists.eu/archive/Issue159.html
http://www.javaspecialists.eu/archive/Issue160.html
http://www.javaspecialists.eu/archive/Issue160.html
http://www.javaspecialists.eu/archive/Issue176.html
http://www.javaspecialists.eu/archive/Issue176.html

10 Years of The Java Specialists' Newsletter 26

The JVM does not enforce all the rules.
Your code is probably wrong, even if it works.

* Don’t stop at a stop sign if
you treasure your car!

8. The Law of
Cretan Driving

10 Years of The Java Specialists' Newsletter 27

Text

10 Years of The Java Specialists' Newsletter 28

10 Years of The Java Specialists' Newsletter 29

10 Years of The Java Specialists' Newsletter 30

Law 8: The Law of Cretan Driving

 Learn the JVM Rules !

 Example from JSR 133 – Java Memory Model
– VM implementers are encouraged to avoid splitting their

64-bit values where possible. Programmers are encouraged
to declare shared 64-bit values as volatile or synchronize
their programs correctly to avoid this.

10 Years of The Java Specialists' Newsletter 31

JSR 133 allows this – NOT a Bug

 Method set() called by two threads with
– 0x12345678ABCD0000L

– 0x1111111111111111L

 Besides obvious answers, “value” could now also be
– 0x11111111ABCD0000L or 0x1234567811111111L

public class LongFields {
 private long value;
 public void set(long v) { value = v; }
 public long get() { return value; }
}

10 Years of The Java Specialists' Newsletter

Tips on Writing Articles

 Keep it short

 Make it funny

 One thought

 Be brief

 Have fun!

 Keep it short
– We are all far too busy to read long articles and complicated

prose that elucidate the advantages of the author's most
excellent perspective versus the terrible spouting of the
lesser mortals who try to contradict his viewpoint.

• Fortunately I am too illiterate to write like that :-)

32

10 Years of The Java Specialists' Newsletter

The Future?

 We are becoming multi-media junkies
– Webinars, podcasts, etc.

• The Youtube generation
– Magazines and books contain old information

 Java Specialist Club
– Weekly mentoring and training sessions

• Gym contract for the mind
• www.javaspecialists.eu/club

– Developed an open source set of annotations for patterns
• www.jpatterns.org

 The Java Specialists' Newsletter
– Will continue ... http://www.javaspecialists.eu

33

10 Years of The Java Specialists' Newsletter 34

Questions?

10 Years of The Java Specialists' Newsletter 35

10 Years of The Java
Specialists' Newsletter

Dr Heinz M. Kabutz
heinz@javaspecialists.eu

http://www.javaspecialists.eu

© 2010 Heinz Kabutz – All Rights Reserved

